Prediction, Modeling and Analysis of Complex Systems
Prediction of behavior of the dynamical systems, analysis and modeling of its structure is vitally important problem in engineering, economy and science today. Examples of such systems can be seen in the world around us and of course in almost every scientific discipline including such "exotic" domains like the earth's atmosphere, turbulent fluids, economies (exchange rate and stock markets), population growth, physics (control of plasma), information flow in social networks and its dynamics, chemistry and complex networks. To understand such dynamics and to use it in research or industrial applications, it is important to create its models. For this purpose there is rich spectra of methods, from classical like ARMA models or Box Jenkins method to such modern ones like evolutionary computation, neural networks, fuzzy logic, fractal geometry, deterministic chaos and more.
Prediction of behavior of the dynamical systems, analysis and modeling of its structure is vitally important problem in engineering, economy and science today. Examples of such systems can be seen in the world around us and of course in almost every scientific discipline including such "exotic" domains like the earth's atmosphere, turbulent fluids, economies (exchange rate and stock markets), population growth, physics (control of plasma), information flow in social networks and its dynamics, chemistry and complex networks. To understand such dynamics and to use it in research or industrial applications, it is important to create its models. For this purpose there is rich spectra of methods, from classical like ARMA models or Box Jenkins method to such modern ones like evolutionary computation, neural networks, fuzzy logic, fractal geometry, deterministic chaos and more.
0 comments:
Post a Comment